Nonmonotonic Inductive Logic Programming
نویسنده
چکیده
Nonmonotonic logic programming (NMLP) and inductive logic programming (ILP) are two important extensions of logic programming. The former aims at representing incomplete knowledge and reasoning with commonsense, while the latter targets the problem of inductive construction of a general theory from examples and background knowledge. NMLP and ILP thus have seemingly different motivations and goals, but they have much in common in the background of problems, and techniques developed in each field are related to one another. This paper presents techniques for combining these two fields of logic programming in the context of nonmonotonic inductive logic programming (NMILP). We review recent results and problems to realize NMILP.
منابع مشابه
Inverse Entailment in Nonmonotonic Logic Programs
Inverse entailment (IE) is known as a technique for finding inductive hypotheses in Horn theories. When a background theory is nonmonotonic, however, IE is not applicable in its present form. The purpose of this paper is extending the IE technique to nonmonotonic inductive logic programming (ILP). To this end, we first establish a new entailment theorem in normal logic programs, then introduce ...
متن کاملNonmonotonic abductive inductive learning
Inductive Logic Programming (ILP) is concerned with the task of generalising sets of positive and negative examples with respect to background knowledge expressed as logic programs. Negation as Failure (NAF) is a key feature of logic programming which provides a means for nonmonotonic commonsense reasoning under incomplete information. But, so far, most ILP research has been aimed at Horn progr...
متن کاملThe Parallelization of a Knowledge Discovery System with Hypergraph Representation
Knowledge discovery is a time-consuming and space intensive endeavor. By distributing such an endeavor, we can diminish both time and space. System INDED(pronounced \indeed") is an inductive implementation that performs rule discovery using the techniques of inductive logic programming and accumulates and handles knowledge using a deductive nonmonotonic reasoning engine. We present four schemes...
متن کاملLearning by Answer Sets
This paper presents a novel application of answer set programming to concept learning in nonmonotonic logic programs. Given an extended logic program as a background theory, we introduce techniques for inducing new rules using answer sets of the program. The produced new rules explain positive/negative examples in the context of inductive logic programming. The result of this paper combines tec...
متن کاملFirst-Order jk-Clausal Theories are PAC-Learnable
We present positive PAC-learning results for the nonmonotonic inductive logic programming setting. In particular, we show that first order range-restricted clausal theories that consist of clauses with up to k literals of size at most j each are polynomialsample polynomial-time PAC-learnable with one-sided error from positive examples only. In our framework, concepts are clausal theories and ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001